Đáp án + Giải thích các bước giải:
`16//3x+5` $\vdots$ `x+1`
`->3(x+1)+2` $\vdots$ `x+1`
`->2` $\vdots$ `x+1` . Do `3(x+1)` $\vdots$ `x+1`
`->x+1∈Ư(2)={±1;±2}`
`→x∈{0;1;-2;-3}`
`17//3x+6` $\vdots$ `x-1`
`->3(x-1)+9` $\vdots$ `x-1`
`→9` $\vdots$ `x-1` . Do `3(x-1)` $\vdots$ `x-1`
`→x-1∈Ư(9)={±1;±3;±9}`
`→x∈{2;4;10;0;-2;-8}`
`18//2x+8` $\vdots$ `2x+1`
`->(2x+1)+7` $\vdots$ `2x+1`
`→7` $\vdots$ `2x+1` . Do `(2x+1)` $\vdots$ `2x+1`
`→2x+1∈Ư(7)={±1;±7}`
`→2x∈{0;6;-2;-8}`
`→x∈{0;3;-1;-4}`
`19//3x+1` $\vdots$ `x+1`
`→3(x+1)-2` $\vdots$ `x+1`
`→2` $\vdots$ `x+1` . Do `3(x+1)` $\vdots$ `x+1`
`→x+1∈Ư(2)={±1;±2}`
`→x∈{0;1;-2;-3}`
`20//3x+7` $\vdots$ `x+1`
`->3(x+1)+4` $\vdots$ `x+1`
`→4` $\vdots$ `x+1` . Do `3(x+1)` $\vdots$ `x+1`
`→x+1∈Ư(4)={±1;±2;±4}`
`→x∈{0;1;3;-2;-3;-5}`