Đáp án:
$\begin{array}{l}
\left| {3x + m} \right| = \left| {x - 1} \right|\\
\Leftrightarrow {\left( {3x + m} \right)^2} = {\left( {x - 1} \right)^2}\\
\Leftrightarrow 9{x^2} + 6mx + {m^2} = {x^2} - 2x + 1\\
\Leftrightarrow 8{x^2} + 2.\left( {3m + 1} \right)x + {m^2} - 1 = 0\\
\Delta ' = {\left( {3m + 1} \right)^2} - 8\left( {{m^2} - 1} \right)\\
= 9{m^2} + 6m + 1 - 8{m^2} + 8\\
= {m^2} + 6m + 9\\
= {\left( {m + 3} \right)^2} \ge 0\forall m
\end{array}$
+ Với m=-3 => phương trình có nghiệm kép x=1
+ Với m khác -3 thì pt luôn có 2 nghiệm phân biệt là:
$x = \frac{{ - 3m - 1 \pm \left| {m + 3} \right|}}{8}$