Đáp án:
\(\left\{ \begin{array}{l}
{n_{Max}} = 2010\\
{n_{Min}} = - 2014
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
\left\{ \begin{array}{l}
1986 < \left| {n + 2} \right|\\
\left| {n + 2} \right| < 2012
\end{array} \right.\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
1986 < n + 2\\
n + 2 < 2012
\end{array} \right.\\
\left\{ \begin{array}{l}
- 1986 > n + 2\\
n + 2 > - 2012
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
1984 < n\\
n < 2010
\end{array} \right.\\
\left\{ \begin{array}{l}
- 1988 > n\\
n > - 2014
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
1984 < n < 2010\\
- 2014 < n < - 1988
\end{array} \right.\\
\to \left\{ \begin{array}{l}
{n_{Max}} = 2010\\
{n_{Min}} = - 2014
\end{array} \right.
\end{array}\)