Đáp án:
$\text{Chúc bạn học tốt}$
Giải thích các bước giải:
$M=\dfrac{1}{3}+\dfrac{1}{16}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{64}+\dfrac{1}{72}+\dfrac{1}{83}+\dfrac{1}{94}$
$⇒M=\dfrac{1}{3}+(\dfrac{1}{16}+\dfrac{1}{19}+\dfrac{1}{21})+(\dfrac{1}{64}+\dfrac{1}{72}+\dfrac{1}{83}+\dfrac{1}{94})$
Xét $\dfrac{1}{16}+\dfrac{1}{19}+\dfrac{1}{21}$
$⇒\dfrac{1}{16}+\dfrac{1}{19}+\dfrac{1}{21}<\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}$
$⇒\dfrac{1}{16}+\dfrac{1}{19}+\dfrac{1}{21}<3×\dfrac{1}{15}$
$⇒\dfrac{1}{16}+\dfrac{1}{19}+\dfrac{1}{21}<\dfrac{1}{5}$
Xét $\dfrac{1}{64}+\dfrac{1}{72}+\dfrac{1}{83}+\dfrac{1}{94}$
$⇒\dfrac{1}{64}+\dfrac{1}{72}+\dfrac{1}{83}+\dfrac{1}{94}<\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}$
$⇒\dfrac{1}{64}+\dfrac{1}{72}+\dfrac{1}{83}+\dfrac{1}{94}<4×\dfrac{1}{60}$
$⇒\dfrac{1}{64}+\dfrac{1}{72}+\dfrac{1}{83}+\dfrac{1}{94}<\dfrac{1}{15}$
Do đó:$M<\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{15}$
$⇒M<\dfrac{3}{5}$
Vậy đpcm