Gọi `BE` là đường trung tuyến `\DeltaABC`
`\Rightarrow BE = \sqrt[a^2 - (1/2a)^2]= \sqrt(3)/2a`
Ta có: `|\vec{AB} - \vec{GC}|= |\vec{AB} + \vec{CG}|`
`= |\vec{AB}+ \vec{GA} +\vec{GB}|`
`=| 2\vec{GB}|= |2. 2/3\vec{EB}|`
`= |4/3. \sqrt(3)/2a| = (2\sqrt(3))/3a`
Vậy: `|\vec{AB} - \vec{GC}|= (2\sqrt(3))/3a`
`\Rightarrow` Chọn`A `