Đáp án:
$I = 1$
Giải thích các bước giải:
Ta có:
$\begin{array}{l}
\mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - 10}}{{x - 1}} = 5\\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) - 10} \right) = 0\\
\Rightarrow f\left( 1 \right) - 10 = 0\\
\Rightarrow f\left( 1 \right) = 10
\end{array}$
Lại có;
$\begin{array}{l}
\mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - 10}}{{x - 1}} = 5\\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - 10}}{{\sqrt x - 1}}.\mathop {\lim }\limits_{x \to 1} \dfrac{1}{\sqrt x + 1} = 5\\
\Rightarrow \dfrac{1}{2}\mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - 10}}{{\sqrt x - 1}} = 5\\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - 10}}{{\sqrt x - 1}} = 10
\end{array}$
Khi đó:
$\begin{array}{l}
I = \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - 10}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt {4f\left( x \right) + 9} + 3} \right)}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - 10}}{{\sqrt x - 1}}.\mathop {\lim }\limits_{x \to 1} \dfrac{1}{{\sqrt {4f\left( x \right) + 9} + 3}}\\
= 10.\dfrac{1}{{\sqrt {4.10 + 9} + 3}}\\
= 1
\end{array}$
Vậy $I = 1$