Đáp án:
Giải thích các bước giải:
`B=(\frac{x+3\sqrt{x}}{x+4\sqrt{x}+3}-\frac{2\sqrt{x}-x}{x-\sqrt{x}-2}).\frac{(x+2\sqrt{x}+1)(\sqrt{x}-1)}{2\sqrt{x}+2}`
ĐK: `x \ge 0, x \ne 4`
`B=[\frac{\sqrt{x}(\sqrt{x}+3)}{(\sqrt{x}+1)(\sqrt{x}+3)}+\frac{\sqrt{x}(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+1)}].\frac{(\sqrt{x}+1)^2(\sqrt{x}-1)}{2(\sqrt{x}+1)}`
`B=(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}+1}).\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{2}`
`B=\frac{2\sqrt{x}}{\sqrt{x}+1}.\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{2}`
`B=\sqrt{x}(\sqrt{x}-1)`