Đáp án:
$\begin{array}{l}
a)Dkxd:x \ge 0;x \ne 4;x \ne 9\\
B = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}\\
= \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\\
b)x = \dfrac{{3 - \sqrt 5 }}{2} = \dfrac{{6 - 2\sqrt 5 }}{4} = \dfrac{{{{\left( {\sqrt 5 - 1} \right)}^2}}}{{{2^2}}}\\
\Rightarrow \sqrt x = \dfrac{{\sqrt 5 - 1}}{2}\\
\Rightarrow B = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} = \dfrac{{\dfrac{{\sqrt 5 - 1}}{2} + 1}}{{\dfrac{{\sqrt 5 - 1}}{2} - 3}}\\
= \dfrac{{\sqrt 5 - 1 + 2}}{{\sqrt 5 - 1 - 6}}\\
= \dfrac{{\sqrt 5 + 1}}{{\sqrt 5 - 7}}\\
= \dfrac{{\left( {\sqrt 5 + 1} \right)\left( {\sqrt 5 + 7} \right)}}{{5 - 49}}\\
= \dfrac{{13 + 8\sqrt 5 }}{{44}}\\
c)B = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} = \dfrac{{\sqrt x - 3 + 4}}{{\sqrt x - 3}} = 1 + \dfrac{4}{{\sqrt x - 3}}\\
B \in Z\\
\Rightarrow \dfrac{4}{{\sqrt x - 3}} \in Z\\
\Rightarrow \left( {\sqrt x - 3} \right) \in \left\{ { - 4; - 2; - 1;1;2;4} \right\}\\
\Rightarrow \sqrt x \in \left\{ { - 1;1;2;4;5;7} \right\}\\
Do:\sqrt x \ge 0;\sqrt x \ne 2;\sqrt x \ne 3\\
\Rightarrow \sqrt x \in \left\{ {1;4;5;7} \right\}\\
\Rightarrow x \in \left\{ {1;16;25;49} \right\}\\
d)B = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\\
\Rightarrow \dfrac{1}{B} = \dfrac{{\sqrt x - 3}}{{\sqrt x + 1}} = \dfrac{{\sqrt x + 1 - 4}}{{\sqrt x + 1}}\\
= 1 - \dfrac{4}{{\sqrt x + 1}}\\
Do:\sqrt x + 1 \ge 1\\
\Rightarrow \dfrac{1}{{\sqrt x + 1}} \le 1\\
\Rightarrow \dfrac{4}{{\sqrt x + 1}} \le 4\\
\Rightarrow - \dfrac{4}{{\sqrt x + 1}} \ge - 4\\
\Rightarrow 1 - \dfrac{4}{{\sqrt x + 1}} \ge 1 - 4\\
\Rightarrow B \ge - 3\\
\Rightarrow GTNN:B = - 3\,\,khi:x = 0
\end{array}$