Đáp án:
\(A = 2\)
Giải thích các bước giải:
\(\begin{array}{l}
\quad A = \left(\dfrac{x-4}{\sqrt{x}-2} + \dfrac{x-2\sqrt x}{\sqrt x}\right):\sqrt x\qquad (x >0;x\ne 4)\\
\to A = \left[\dfrac{\left(\sqrt x - 2\right)\left(\sqrt x + 2\right)}{\sqrt x - 2}+\dfrac{\sqrt x\left(\sqrt x - 2\right)}{\sqrt x}\right]\cdot \dfrac{1}{\sqrt x}\\
\to A = \dfrac{\sqrt x + 2 + \sqrt x - 2}{\sqrt x}\\
\to A = \dfrac{2\sqrt x}{\sqrt x}\\
\to A = 2
\end{array}\)