Đáp án:
\[\left[ \begin{array}{l}
x = \dfrac{1}{3}\\
x = \dfrac{2}{3}\\
x = 0
\end{array} \right.\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
{\left( {3x - 1} \right)^6} = {\left( {3x - 1} \right)^4}\\
\Leftrightarrow {\left( {3x - 1} \right)^6} - {\left( {3x - 1} \right)^4} = 0\\
\Leftrightarrow {\left( {3x - 1} \right)^4}.\left[ {{{\left( {3x - 1} \right)}^2} - 1} \right] = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{\left( {3x - 1} \right)^4} = 0\\
{\left( {3x - 1} \right)^2} = 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
3x - 1 = 0\\
3x - 1 = 1\\
3x - 1 = - 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{1}{3}\\
x = \dfrac{2}{3}\\
x = 0
\end{array} \right.
\end{array}\)