$a,3x-2=x+4$
$⇔ 3x -x = 4 +2$
$⇔ 2x = 6$
$⇔ x = 3$
$Vậy$ $S =$ {$3$}
$b,1-x/2 +5 = 2(6-x)/3$
$⇔ 6.(1 -x)/12 - 60/12 = 4.(12 -2x)/12$
$⇔ 6.(1 -x) -60 = 4.(12 -2x)$
$⇔ 6 -6x -60 = 48 -8x$
$⇔ -6x +8x = 48 +54$
$⇔ 2x = 102$
$⇔ x = 51$
$Vậy$ $S =$ {$51$}
$c,2x³ -5x² +3x = 0$
$⇔ 2x²(x -1) -3x(x -1) = 0$
$⇔ (x -1)(2x² -3x) = 0$
$⇔ x.(x -1).(2x -3) = 0$
$⇔ \left[ \begin{array}{l}x=0\\x -1=0\\2x -3 = 0\end{array} \right. ⇔ \left[ \begin{array}{l}x=0\\x=1\\x =\frac{3}{2} \end{array} \right.$
$Vậy$ $S =$ {$0; 1; \frac{3}{2}$}
$d, 3/x-3+1/x+3=x-4/x²-9$ $(ĐKXĐ:$ $x \neq ±3)$
$⇔ 3(x +3)/(x -3)(x +3) + (x -3)/(x +3)(x -3) = x -4/(x -3)(x +3)$
$⇔ 3.(x +3) + x -3 = x -4$
$⇔ 3x +9 +x -3 = x -4$
$⇔ 4x -x = -4 -6$
$⇔ 3x = -10$
$⇔ x = \frac{-10}{3}$ $(t/m$ $đkxđ)$
$Vậy$ $S =$ {$\frac{-10}{3}$}