`a)`
ĐK : `{(a>=0),(sqrta-1 \ne 0),(a+sqrta \ne 0),(sqrta+1 \ne 0):}``<=> {(a>=0),(a ne 1):}`
`b)`
`A=((a-sqrta)/(sqrta-1)-(sqrta+1)/(a+sqrta)):(sqrta+1)/a`
`=((sqrta(sqrta-1))/(sqrta-1)-(sqrta+1)/(sqrta(sqrta+1))).a/(sqrta+1)`
`=(sqrta-1/(sqrta)).a/(sqrta+1)`
`=(sqrta.sqrta-1)/(sqrta).a/(sqrta+1)`
`=(a-1)/(sqrta).a/(sqrta+1)`
`=((sqrta-1)(sqrta+1))/(sqrta) . (sqrta.sqrta)/(sqrta+1)`
`=sqrta(sqrta-1)`
`=a-sqrta`
`c)`
`A=a-sqrta`
`=a-2. sqrta . 1/2+1/4-1/4`
`=(sqrta-1/2)^2-1/4>=-1/4`
Dấu "=" xảy ra khi : `(sqrta-1/2)^2=0`
`<=> a=1/4 \ \ (tm)`
Vậy `A_(min)=-1/4 <=> a=1/4`