Đáp án+Giải thích các bước giải:
4,
a,
`P=(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}):(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{1}{2})`
`Đk:`
$\begin{cases}x≥0\\x-9\neq0\\\sqrt{x}-3\neq0\end{cases}$
$⇔\begin{cases}x≥0\\x\neq9\\x\neq9\end{cases}$
Vậy `x≥0;x\ne9` thì biểu thức xác định
b,
`P=(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}):(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{1}{2})(x≥0;x\ne9)`
`P=(\frac{2\sqrt{x}(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-3x-3}{(\sqrt{x}-3)(\sqrt{x}+3)}):(\frac{2\sqrt{x}-2-\sqrt{x}+3}{2(\sqrt{x}-3)})`
`P=(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{(\sqrt{x}-3)(\sqrt{x}+3)}):\frac{\sqrt{x}+1}{2(\sqrt{x}-3)}`
`P=\frac{-3\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{2(\sqrt{x}-3)}{\sqrt{x}+1}`
`P=\frac{-3(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{2(\sqrt{x}-3)}{\sqrt{x}+1}`
`P=\frac{-6}{\sqrt{x}+3}`
c,
`P∈Z⇔-6\vdots\sqrt{x}+3⇔\sqrt{x}+3∈Ư(-6)={±1;±2;±3;±6}`
`\sqrt{x}+3≥3⇒\sqrt{x}+3∈{3,6}`
Lập bảng giá trị:
$\begin{array}{|c|c|c|}\hline \sqrt{x}+3&3&6\\\hline x&0&9(L)\\\hline \end{array}$
Vậy `x=0` thì `P∈Z`