\[\begin{array}{l}
y = {x^3} + \left( {m + 2} \right){x^2} - \left( {m - 1} \right)x + 2\\
\Rightarrow y' = 3{x^2} + 2\left( {m + 2} \right)x - m + 1\\
\Rightarrow y'' = 6x + 2m + 4\\
\Rightarrow hs\,\,\,dat\,\,cuc\,\,\,tieu\,\,tai\,\,x = 3\\
\Leftrightarrow \left\{ \begin{array}{l}
y'\left( 3 \right) = 0\\
y''\left( 3 \right) > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{3.3^2} + 2\left( {m + 2} \right).3 - m + 1 = 0\\
6.3 + 2m + 4 > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
28 + 6m + 12 = 0\\
22 + 2m > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m = 5\\
m > \frac{{ - 11}}{2}
\end{array} \right. \Leftrightarrow m = 5.\\
Vay\,\,m = 5\,\,thoa\,\,man.
\end{array}\]