Hãy giải thích tại sao khi đổ 50cm³ nước vào 50cm³ cồn thì hỗn hợp lại có thể tích 90cm³

Các câu hỏi liên quan

Bài 1 : Cho tam giác DEF cân tại D với đường trung tuyến DI a) Chứng minh : Δ DEI = Δ DFI b) Các góc DIE và góc DIF là những góc gì ? c) biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE Bài 2 : Cho tam giác ABC vuông ở A , có ∠C = 30 độ , AH ⊥ BC ( H thuộc BC ) . Trên đoạn HC lấy điểm D sao cho HD = HB . Từ C kẻ CE ⊥ AD . Chứng minh : a) Tam giác ABD là tam giác đều b) AH = CE c) EH // AC Bài 3 : Cho Δ ABC cân tại A , vẽ AH vuông góc với BC tại H . Biết AB = 5cm , BC = 6cm a) Chứng minh BH = HC b) Tính độ dài BH , AH c) Gọi G là trọng tâm của tam giác ABC . Chứng minh rằng A , G , H thẳng hàng d) Chứng minh ∠ABG = ∠ACG Bài 4 : Cho ΔABC có góc C = 90độ ; BC = 3cm ; CA = 4cm . Tia phân giác BK của góc ABC ( K thuộc CA ) ; từ K kẻ KE ⊥ AB tại E a) Tính AB b) Chứng minh BC = BE c) Tia BC cắt EK tại M . So sánh KM và KE d ) Chứng minh CE // MA Bài 5 : Cho Δ ABC cân tại A có AB = 5cm , BC = 6cm. Từ A kẻ đường vuông góc AH đến BC . a) Chứng minh BH = HC b) Tính độ dài đoạn AH c) Gọi G là trọng tâm ΔABC . Trên tia AG lấy điểm D sao cho AG = GD . Tia CG cắt AB tại F . Chứng minh : BD = 2/3CF d) Chứng minh : DB + DG > AB Bài 6 : Cho ΔABC cân tại A , hai chung tuyến BM , CN cắt nhau tại K . Chứng minh : a) ΔBNC = Δ CMB b) BKC cân tại K c) MN // BC Bài 7 : Cho Δ ABC cân tại A . Gọi M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho DM = BM a) Chứng minh Δ BMC = Δ DMA . Suy ra AD // BC b) Chứng minh Δ ACD là tam giác cân c) Trên tia đối của tia CA lấy điểm E sao cho CA = CE . Chứng minh DC đi qua trung điểm I của BE