Đáp án:
$\\$
`a,`
`2^x ×4 = 128`
`↔ 2^x = 128 ÷ 4`
`↔ 2^x = 32`
`↔ 2^x = 2^5`
`↔x=5`
Vậy `x=5`
$\\$
`b,`
`x^{15} = x`
`↔ x^{15} - x = 0`
`↔ x (x^{14} - 1) = 0`
Trường hợp 1 :
`↔x=`0
Trường hợp 2 :
`↔x^{14}-1=0`
`↔x^{14}=0+1`
`↔x^{14}=1`
`↔` \(\left[ \begin{array}{l}x^{14}=1^{14}\\x^{14}=(-1)^{14}\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\)
Vậy `x=0,x=1,x=-1`
$\\$
`c,`
`(2x+1)^3 = 125`
`↔ (2x+1)^3=5^3`
`↔2x+1=5`
`↔2x=5-1`
`↔2x=4`
`↔x=4÷2`
`↔x=2`
Vậy `x=2`
$\\$
`d,`
`(x-5)^4 = (x-5)^6`
`↔ (x-5)^4 - (x-5)^6 = 0`
`↔ (x-5)^4 - (x-5)^4 × (x-5)^2 = 0`
`↔ [1 - (x-5)^2] (x-5)^4 =0`
Trường hợp 1 :
`↔ 1 - (x-5)^2=0`
`↔(x-5)^2=1-0`
`↔(x-5)^2=1`
`↔` \(\left[ \begin{array}{l}(x-5)^2=1^2\\(x-5)^2=(-1)^2\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x-5=1\\x-5=-1\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=1+5\\x=-1+5\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=6\\x=4\end{array} \right.\)
Trường hợp 2 :
`↔ (x-5)^4=0`
`↔x-5=0`
`↔x=0+5`
`↔x=5`
Vậy `x=6,x=4,x=5`
$\\$
`e,`
`2^x - 15 = 17`
`↔ 2^x=17+15`
`↔2^x=32`
`↔ 2^x = 2^5`
`↔x=5`
Vậy `x=5`
$\\$
`g,`
`(7x - 11)^3 =2^5 × 5^2 + 200`
`↔ (7x-11)^3=32 × 25 + 200`
`↔ (7x-11)^3=800 + 200`
`↔ (7x-11)^3=1000`
`↔ (7x-11)^3=10^3`
`↔7x-11=10`
`↔7x=10+11`
`↔7x=21`
`↔x=21÷7`
`↔x=3`
Vậy `x=3`
$\\$
`h,`
`x^{10}=x`
`↔x^{10}-x=0`
`↔x (x^9-1)=0`
Trường hợp 1 :
`↔x=0`
Trường hợp 2 :
`↔x^9-1=0`
`↔x^9=0+1`
`↔x^9=1`
`↔x^9=1^9`
`↔x=1`
Vậy `x=0,x=1`