ĐKXĐ:`x≥-1;x\ne3`
Xét `(x^2-5x+6)/(2x-6)`
`⇔(x^2-2x-3x+6)/(2x-6)`
`⇔[x(x-2)-3(x-2)]/(2x-6)`
`⇔[(x-2)(x-3)]/[2(x-3)]`
`⇔(x-2)/2`
`⇒` Phương trình trở thành
`(x-2)/(\sqrt{x+1}+x)-(x-2)/2=0`
`⇔[2(x-2)-(x-2)(\sqrt{x+1}+x)]/[2(\sqrt{x+1}+x)]=0`
`⇔2x-4-(x.\sqrt{x+1}-2\sqrt{x+1}+x^2-2x)=0`
`⇔2x-4-x.\sqrt{x+1}+2\sqrt{x+1}-x^2+2x=0`
`⇔-x^2+4x-4-\sqrt{x+1}(x-2)=0`
`⇔x^2-4x+4+\sqrt{x+1}(x-2)=0`
`⇔(x-2)^2+\sqrt{x+1}(x-2)=0`
`⇔(x-2)(x-2+\sqrt{x+1})=0`
TH1:
`x-2=0`
`⇔x=2`
TH2:
`x-2+\sqrt{x+1}=0`
`⇔\sqrt{x+1}=2-x` `(`ĐKXĐ:`2-x≥0⇔x≤2)`
`⇔x+1=4-4x+x^2`
`⇔x^2-5x+3=0`
`Δ= 13`
`⇒`\(\left[ \begin{array}{l}x=\dfrac{5+\sqrt{13}}{2}(KTM)\\x=\dfrac{5-\sqrt{13}}{2}\end{array} \right.\)