`m) x^2+2x+1=3x+3`
`⇔x^2+2x-3x=-1+3`
`⇔x^2-x=2`
`⇔x(x-1)=2`
`⇔`\(\left[ \begin{array}{l}x=2\\x-1=2\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=2\\x=3\end{array} \right.\)
Vậy `x=2` hoặc `x=3`
`n)3(2x-1)^2=147`
`⇔3(2x^2-2.2x.1+1^2)=147`
`⇔3(2x^2-4x+1)=147`
`⇔6x^2-12x+3=147`
`⇔6x^2-12x+3-147=0`
`⇔6x^2-12x=-144`
`⇔6x(x-2)=-144`
`⇔`\(\left[ \begin{array}{l}6x=-144\\x-2=-144\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=-24\\x=-142\end{array} \right.\)
Vậy `x=-24` hoặc `x=-142`
`o)(3x-1)^2-16=0`
`⇔(3x^2-2.3x.1+1^2)-16=0`
`⇔3x^2-6x+1-16=0`
`⇔3x^2-6x-15=0`
`⇔3x^2-6x=15`
`⇔3x(x-2)=15`
`⇔`\(\left[ \begin{array}{l}3x=15\\x-2=15\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=5\\x=17\end{array} \right.\)
Vậy `x=5` hoặc `x=17`
`p)(3x-2)^2=25`
`⇔3x^2-2.3x.2+2^2=25`
`⇔3x^2-12x+4=25`
`⇔3x^2-12x=21`
`⇔3x(x-4)=21`
`⇔`\(\left[ \begin{array}{l}3x=21\\x-4=21\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=7\\x=25\end{array} \right.\)
Vậy `x=7` hoặc `x=25`
`q) 3x(2x-3)=6-4x`
`⇔6x^2-9x=6-4x`
`⇔6x^2-9x+4x=6`
`⇔6x^2-5x=6`
`⇔x(6x-5)=6`
`⇔` \(\left[ \begin{array}{l}x=6\\6x-5=6\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=6\\x=\frac{11}{6}\end{array} \right.\)
Vậy `x=6` hoặc `x=11/6`
`r) 4x(x-2015)-x+2015=0`
`⇔4x(2015)-(x-2015)=0`
`⇔(4x-1)(x-2015)=0`
`⇔`\(\left[ \begin{array}{l}4x=0\\x-2015=0\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=0\\x=2015\end{array} \right.\)
Vậy `x=0` hoặc `x=2015`
`t) (x-2)^2-(x-2)(2x-3)=0`
`⇔(x-2)(x-2)-(x-2)(2x-3)=0`
`⇔(x-2)(x-2-2x-3)=0`
`⇔(x-2)(-x-5)=0`
`⇔` \(\left[ \begin{array}{l}x-2=0\\-x-5=0\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=2\\x=5\end{array} \right.\)
Vậy `x=2` hoặc `x=-5`
`#Snow`