`#tnvt`
`(16x^2-22x+15-6x^3+x^4):(x^2-2x+3)`
`=(x^4-6x^3+16x^2-22x+15):(x^2-2x+3)`
`=(x^4-2x^3+3x^2-4x^3+8x^2-12x+5x^2-10x+15):(x^2-2x+3)`
`=[x^2(x^2-2x+3)-4x(x^2-2x+3)+5(x^2-2x+3)]:(x^2-2x+3)`
`=(x^2-4x+5)(x^2-2x+3):(x^2-2x+3)`
`=x^2-4x+5`
$\\$
`(x^2-1/2x):2x-(3x-1)^2:(3x-1)=0`
`<=>(2x.1/2 x-2x. 1/4):2x-(3x-1)=0`
`<=>2x(1/2x-1/4):2x-3x+1=0`
`<=>1/2x-1/4-3x+1=0`
`<=>-5/2x+3/4=0`
`<=>-5/2x=-3/4`
`<=>x=3/10`
Vậy `x=3/10`