Đáp án:
\(\begin{array}{l}
a)A = \dfrac{{13}}{8}\\
b)\dfrac{{\sqrt x - 5}}{{\sqrt x + 8}}\\
c)\left[ \begin{array}{l}
x = 25\\
x = 1
\end{array} \right.\\
d)0 \le x < 1
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)A = \dfrac{{\sqrt x \left( {\sqrt x + 3} \right) + 2\sqrt x - 24}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x + 3\sqrt x + 2\sqrt x - 24}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x + 5\sqrt x - 24}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {\sqrt x + 8} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x + 8}}{{\sqrt x + 3}}\\
Thay:x = 25\\
\to A = \dfrac{{\sqrt {25} + 8}}{{\sqrt {25} + 3}} = \dfrac{{5 + 8}}{{5 + 3}} = \dfrac{{13}}{8}\\
b)B = \dfrac{{\sqrt x - 5}}{{\sqrt x + 8}}\\
c)Q = A.B = \dfrac{{\sqrt x + 8}}{{\sqrt x + 3}}.\dfrac{{\sqrt x - 5}}{{\sqrt x + 8}}\\
= \dfrac{{\sqrt x - 5}}{{\sqrt x + 3}} = \dfrac{{\sqrt x + 3 - 8}}{{\sqrt x + 3}} = 1 - \dfrac{8}{{\sqrt x + 3}}\\
Q \in Z \to \dfrac{8}{{\sqrt x + 3}} \in Z \to \sqrt x + 3 \in U\left( 8 \right)\\
\to \left[ \begin{array}{l}
\sqrt x + 3 = 8\\
\sqrt x + 3 = 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sqrt x = 5\\
\sqrt x = 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 25\\
x = 1
\end{array} \right.\\
d)Q < - 1\\
\to \dfrac{{\sqrt x - 5}}{{\sqrt x + 3}} + 1 < 0\\
\to \dfrac{{\sqrt x - 5 + \sqrt x + 3}}{{\sqrt x + 3}} < 0\\
\to \dfrac{{2\sqrt x - 2}}{{\sqrt x + 3}} < 0\\
\to \sqrt x - 1 < 0\left( {do:\sqrt x + 3 > 0\forall x} \right)\\
\to 0 \le x < 1
\end{array}\)