\(\begin{array}{l}
a) \Leftrightarrow \frac{{{3^x}}}{3} + 4.\frac{{{3^x}}}{{{3^2}}} = \frac{7}{{243}}\\
\Leftrightarrow {3^x}\left( {\frac{1}{3} + \frac{4}{9}} \right) = \frac{7}{{243}}\\
\Leftrightarrow {3^x}.\frac{7}{9} = \frac{7}{{243}}\\
\Leftrightarrow {3^x} = \frac{7}{{243}}:\frac{7}{9}\\
\Leftrightarrow {3^x} = \frac{1}{{27}}\\
\Leftrightarrow {3^x} = {3^{ - 2}} \Leftrightarrow x = - 2\\
b)\, \Rightarrow \frac{{x\left( {x - y} \right)}}{{y\left( {x - y} \right)}} = \frac{3}{{10}}:\left( { - \frac{3}{{50}}} \right) = - 5\\
\Leftrightarrow \frac{x}{y} = - 5 \Rightarrow x = - 5y\\
\Rightarrow \left( { - 5y} \right)\left( { - 5y - y} \right) = \frac{3}{{10}}\\
\Leftrightarrow 30{y^2} = \frac{3}{{10}} \Leftrightarrow {y^2} = \frac{1}{{100}} \Rightarrow y = \frac{1}{{10}} \Rightarrow x = - \frac{1}{2}\\
c)\,\left\{ \begin{array}{l}
{\left( {7x - 5y} \right)^{2018}} \ge 0\\
{\left( {3x - 2z} \right)^{2020}} \ge 0\\
{\left( {xy + yz + xz - 4500} \right)^{2022}} \ge 0
\end{array} \right.\\
\Rightarrow {\left( {7x - 5y} \right)^{2018}} + {\left( {3x - 2z} \right)^{2020}} + {\left( {xy + yz + xz - 4500} \right)^{2022}} = 0\\
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {7x - 5y} \right)^{2018}} = 0\\
{\left( {3x - 2z} \right)^{2020}} = 0\\
{\left( {xy + yz + xz - 4500} \right)^{2022}} = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
7x = 5y\\
3x = 2z\\
xy + yz + xz - 4500 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y = \frac{{7x}}{5}\\
z = \frac{{3x}}{2}\\
xy + yz + xz - 4500 = 0
\end{array} \right.\\
\Rightarrow x.\frac{{7x}}{5} + \frac{{7x}}{5}.\frac{{3x}}{2} + x.\frac{{3x}}{2} = 4500\\
\Leftrightarrow {x^2}.5 = 4500 \Leftrightarrow {x^2} = 900\\
\Leftrightarrow \left[ \begin{array}{l}
x = 30 \Rightarrow y = 42;z = 45\\
x = - 30 \Rightarrow y = - 42;z = - 45
\end{array} \right.
\end{array}\)