Đáp án:
\(\begin{array}{l}
a)\sqrt 5  - 2\\
c)2\\
e)\dfrac{{13 - \sqrt 5 }}{2}
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\sqrt {5 - 2.2.\sqrt 5  + 4} \\
 = \sqrt {{{\left( {\sqrt 5  - 2} \right)}^2}} \\
 = \sqrt 5  - 2\\
c)\sqrt {4 + \sqrt 8 } .\sqrt {\left( {2 + \sqrt {2 + \sqrt 2 } } \right)\left( {2 - \sqrt {2 + \sqrt 2 } } \right)} \\
 = \sqrt {4 + \sqrt 8 } .\sqrt {4 - \left( {2 + \sqrt 2 } \right)} \\
 = \sqrt {4 + \sqrt 8 } .\sqrt {2 - \sqrt 2 } \\
 = \sqrt {2\left( {2 + \sqrt 2 } \right)\left( {2 - \sqrt 2 } \right)} \\
 = \sqrt {2\left( {4 - 2} \right)} \\
 = \sqrt {2.2}  = 2\\
e)\dfrac{{{{\left( {\sqrt 5  - \sqrt 3 } \right)}^2} + {{\left( {\sqrt 5  + \sqrt 3 } \right)}^2}}}{{\left( {\sqrt 5  - \sqrt 3 } \right)\left( {\sqrt 5  + \sqrt 3 } \right)}} - \dfrac{{{{\left( {\sqrt 5  + 1} \right)}^2}}}{{\left( {\sqrt 5  - 1} \right)\left( {\sqrt 5  + 1} \right)}}\\
 = \dfrac{{8 - 2\sqrt {15}  + 8 + 2\sqrt {15} }}{{5 - 3}} - \dfrac{{6 + 2\sqrt 5 }}{{5 - 1}}\\
 = \dfrac{{16}}{2} - \dfrac{{6 + 2\sqrt 5 }}{4}\\
 = 8 - \dfrac{{3 + \sqrt 5 }}{2}\\
 = \dfrac{{16 - 3 - \sqrt 5 }}{2}\\
 = \dfrac{{13 - \sqrt 5 }}{2}
\end{array}\)