Đáp án đúng: A
Giải chi tiết:Gọi \(x\) là số học sinh của trường \(\left( {500 < {\rm{ }}x < 600,\,\,\,x \in {\mathbb{N}^*}} \right).\)
Vì khi xếp hàng \(12\), hàng \(15\) hay hàng \(18\) thì đều vừa đủ hàng nên ta có \(x\,\, \vdots \,\,12\,\,;\,\,x\,\, \vdots \,\,15\,\, ;\,\,x\,\, \vdots \,\,18\) suy ra \(x \in BC\left( {12\, ;\,\,15\,;\,\,18} \right)\).
Ta có: \(12 = {2^2}.3\,\,\,;\,\,\,\,\,\,\,\,\,\,15\, = 3.5\,\,\,;\,\,\,\,\,\,\,\,\,\,18 = {2.3^2}\)
\( \Rightarrow BCNN\left( {12\,;\,\,15 \,;\,\,18} \right) = {2^2}{.3^2}.5 = 180\).
\( \Rightarrow BC\left( {12\,;\,\,15 \,;\,\,18} \right) = \left\{ {0\,;\,\,180\,;\,\,360\,;\,\,540\,;\,\,720\,;\,\,\,...} \right\}\)
Do đó: \(x \in \left\{ {\,180\,;\,\,360\,;\,\,540\,;\,\,720\,;\,\,\,...} \right\}\)
Lại có \(500 < {\rm{ }}x < 600\) nên \(x = 540\).
Vậy trường đó có \(540\) học sinh.
Chọn A.