\[\begin{array}{l}
y = \sqrt {1 + \frac{1}{2}{{\cos }^2}x} + \frac{1}{2}\sqrt {5 + 2{{\sin }^2}x} \\
= \sqrt {1 + \frac{1}{2}{{\cos }^2}x} + \frac{1}{2}\sqrt {5 + 2\left( {1 - {{\cos }^2}x} \right)} \\
= \sqrt {\frac{{2 + {{\cos }^2}x}}{2}} + \frac{1}{2}\sqrt {7 - 2{{\cos }^2}x} \\
Dat\,\,\,\cos x = t\,\,\,\,\,\left( { - 1 \le t \le 1} \right).\\
\Rightarrow y = \sqrt {\frac{{{t^2} + 2}}{2}} + \frac{1}{2}\sqrt {7 - 2{t^2}} \\
\Rightarrow y' = \frac{t}{{2\sqrt {\frac{{{t^2} + 2}}{2}} }} + \frac{1}{2}.\frac{{ - 4t}}{{2\sqrt {7 - 2{t^2}} }} = \frac{t}{{\sqrt {2\left( {{t^2} + 2} \right)} }} - \frac{t}{{\sqrt {7 - 2{t^2}} }}\\
\Rightarrow y' = 0 \Leftrightarrow \frac{t}{{\sqrt {2\left( {{t^2} + 2} \right)} }} - \frac{t}{{\sqrt {7 - 2{t^2}} }} = 0\\
\Leftrightarrow t\left( {\frac{1}{{\sqrt {2\left( {{t^2} + 2} \right)} }} - \frac{1}{{\sqrt {7 - 2{t^2}} }}} \right) = 0\\
\Leftrightarrow t\left( {\sqrt {7 - 2{t^2}} - \sqrt {2\left( {{t^2} + 2} \right)} } \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
t = 0\\
\sqrt {7 - 2{t^2}} - \sqrt {2\left( {{t^2} + 2} \right)} = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
t = 0\\
7 - 2{t^2} = 2{t^2} + 4
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
t = 0\\
4{t^2} = 3
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
t = 0\\
{t^2} = \frac{3}{4}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
t = 0\\
t = \frac{{\sqrt 3 }}{2}\\
t = - \frac{{\sqrt 3 }}{2}
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
y\left( { - 1} \right) = y\left( 1 \right) = \frac{{\sqrt 6 + \sqrt 5 }}{2}\\
y\left( 0 \right) = 1 + \frac{{\sqrt 7 }}{2}\\
y\left( { \pm \frac{{\sqrt 3 }}{2}} \right) = \frac{{\sqrt {22} }}{2}
\end{array} \right..
\end{array}\]
Em so sánh và chọn GTLN, GTNN trong các giá trị trên nhé.