Đáp án:
Giải thích các bước giải:
\[\begin{array}{l}
Goi\,\overrightarrow v = \left( {a;b} \right);\,{\overrightarrow n _d} = \left( {3; - 4} \right) \Rightarrow {\overrightarrow u _d} = \left( {4;3} \right)\\
\overrightarrow v \bot d \Rightarrow 4a + 3b = 0\,\,\,\,\,\,\,\,\left( 1 \right)\\
Lay\,A\left( { - 1;0} \right) \in d \Rightarrow A' = {T_{\overrightarrow v }}\left( A \right) = \left( {a - 1;b} \right) \in d'\\
\Rightarrow 3\left( {a - 1} \right) - 4b - 2 = 0 \Leftrightarrow 3a - 4b - 5 = 0\,\,\,\,\left( 2 \right)\\
\left( 1 \right)\,va\left( 2 \right) \Rightarrow \left\{ \begin{array}{l}
4a + 3b = 0\\
3a - 4b = 15
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a = \frac{3}{5}\\
b = - \frac{4}{5}
\end{array} \right.
\end{array}\]