$\text{A = [$\dfrac{3}{2x}$ - $\dfrac{2}{x+1}$ . ($\dfrac{x+1}{3x}$ - x - 1)] : $\dfrac{x-1}{x}$ (Đk: x $\neq$ 0; x $\neq$ -1)}$
$\text{A = [$\dfrac{3}{2x}$ - $\dfrac{2}{x+1}$ . ($\dfrac{x+1}{3x}$ - $\dfrac{3x(x+1)}{3x}$)] . $\dfrac{x}{x-1}$}$
$\text{A = [$\dfrac{3}{2x}$ - $\dfrac{2}{x+1}$ . $\dfrac{x+1-3x^{2}-3x}{3x}$] . $\dfrac{x}{x-1}$}$
$\text{A = ($\dfrac{3}{2x}$ - $\dfrac{2}{x+1}$ . $\dfrac{-3x^{2}-2x+1}{3x}$) . $\dfrac{x}{x-1}$}$
$\text{A = ($\dfrac{3}{2x}$ - $\dfrac{2}{x+1}$ . $\dfrac{-3x^{2}-3x+x+1}{3x}$) . $\dfrac{x}{x-1}$}$
$\text{A = ($\dfrac{3}{2x}$ - $\dfrac{2}{x+1}$ . $\dfrac{-3x(x+1)+(x+1)}{3x}$) . $\dfrac{x}{x-1}$}$
$\text{A = ($\dfrac{3}{2x}$ - $\dfrac{2}{x+1}$ . $\dfrac{(1-3x)(x+1)}{3x}$) . $\dfrac{x}{x-1}$}$
$\text{A = ($\dfrac{3}{2x}$ - $\dfrac{2(1-3x)}{3x}$) . $\dfrac{x}{x-1}$}$
$\text{A = ($\dfrac{3}{2x}$ - $\dfrac{2-6x}{3x}$) . $\dfrac{x}{x-1}$}$
$\text{A = ($\dfrac{9}{6x}$ - $\dfrac{2(2-6x)}{6x}$) . $\dfrac{x}{x-1}$}$
$\text{A = ($\dfrac{9}{6x}$ - $\dfrac{4-12x)}{6x}$) . $\dfrac{x}{x-1}$}$
$\text{A = $\dfrac{5+12x}{6x}$ . $\dfrac{x}{x-1}$}$
$\text{A = $\dfrac{5+12x}{6(x-1)}$}$
$\text{A = $\dfrac{5+12x}{6x-6}$}$