Đáp án:
a, $125x^{3}$ - $64y^{3}$
= $(5x)^{3}$ - $(4y)^{3}$
= $(5x - 4y)$($25x^{2}$ + $20xy$ + $16y^{2}$ )
Tìm MIN
a, $A$= $x^{2}$ - $16x$ $+180$
= $x^{2}$ - $2.8x$ + $8^{2}$ $+116$
= $(x-8)^{2}$ + $116 \geq 116 $
$⇒$ $Amin= 116$ ⇔ $(x-8)^{2}$
⇔ $x=8$
b, $B$ = $16x^{2}$ $ - 40x + 2020$$
= $(4x)^{2}$ $- 2.4x.5 +$ $5^{2}$ $+ 1995$
= $(4x-5)^{2}$ $+ 1995$ $\geq$ $1995$
$Bmin=1995 $⇔ $(4x-5)^{2}$ = 0
⇔ $x=$$\frac{5}{4}$