Giải thích các bước giải:
\(\begin{array}{l}
a.\frac{{2x + 5}}{{95}} + 1 + \frac{{2x + 6}}{{94}} + 1 + \frac{{2x + 7}}{{93}} + 1 = \frac{{2x + 93}}{7} + 1 + \frac{{2x + 94}}{6} + 1 + \frac{{2x + 95}}{5} + 1\\
\to \frac{{2x + 100}}{{95}} + \frac{{2x + 100}}{{94}} + \frac{{2x + 100}}{{93}} = \frac{{2x + 100}}{7} + \frac{{2x + 100}}{6} + \frac{{2x + 100}}{5}\\
\to \left( {2x + 100} \right)\left( {\frac{1}{{95}} + \frac{1}{{94}} + \frac{1}{{93}} - \frac{1}{7} - \frac{1}{6} - \frac{1}{5}} \right) = 0\\
\to 2x + 100 = - 50\\
b.\frac{{74 - x}}{{26}} + 1 + \frac{{75 - x}}{{25}} + 1 + \frac{{76 - x}}{{24}} + 1 + \frac{{77 - x}}{{23}} + 1 + \frac{{78 - x}}{{22}} + 1 = 0\\
\to \frac{{100 - x}}{{26}} + \frac{{100 - x}}{{25}} + \frac{{100 - x}}{{24}} + \frac{{100 - x}}{{23}} + \frac{{100 - x}}{{22}} = 0\\
\to \left( {100 - x} \right)\left( {\frac{1}{{26}} + \frac{1}{{25}} + \frac{1}{{24}} + \frac{1}{{23}} + \frac{1}{{22}}} \right) = 0\\
\to x = 100\\
c.\frac{{x - 50}}{{50}} - 1 + \frac{{x - 51}}{{49}} - 1 + \frac{{x - 52}}{{48}} - 1 + \frac{{x - 53}}{{47}} - 1 + \frac{{x - 200}}{{25}} + 4 = 0\\
\to \frac{{x - 100}}{{50}} + \frac{{x - 100}}{{49}} + \frac{{x - 100}}{{48}} + \frac{{x - 100}}{{47}} + \frac{{x - 100}}{{25}} = 0\\
\to \left( {x - 100} \right)\left( {\frac{1}{{50}} + \frac{1}{{49}} + \frac{1}{{48}} + \frac{1}{{47}} + \frac{1}{{25}}} \right) = 0\\
\to x - 100 = 0\\
\to x = 100
\end{array}\)