$6$) `(3,25 x + {-7}/6 x) - 1 2/3 = 5/12`
`⇔ x . 25/12 - 5/3= 5/12`
`⇔ x . 25/12 = 25/12`
`⇔ x = 1`
Vậy `x=1`
$7$) `2x - 5/9 = 1/3 + |11/3 - 4 2/3|`
`⇔ 2x - 5/9 =1/3 + 1`
`⇔ 2x = 17/9`
`⇔ x = 17/18`
Vậy `x=17/18`
$8$) `(1/2 - |x|) . 2/3 = 1/8`
`⇔ 1/2 - |x| = 3/16`
`⇔ |x| = 5/16`
`⇒` `x` `=` `±5/16`
Vậy `x` `=` `±5/16`
$9$) `3/2 . |x-1| + 2 = 3 1/2`
`⇔ 3/2 . |x-1| = 3/2`
`⇔ |x-1| = 1`
`⇔ x ∈` `{2;0}`
Vậy `x ∈` `{2;0}`
$10$) `1/3 + 4/3 : |x - 0,2| =2 `
`⇔ 4/3 : |x-0,2| = 5/3`
`⇔ |x-0,2| = 4/5`
`⇒` \(\left[ \begin{array}{l}x=1\\x=-\dfrac{3}{5}\end{array} \right.\)
Vậy $x$ $∈$ `{1;-3/5}`
$11$) `(2x+3/5)^2 - 9 /25 = 0`
`⇔ (2x+3/5)^2 = 9/25`
`⇔ 2x + 3/5 = ± 3/5`
`⇒` \(\left[ \begin{array}{l}x=0\\x=-\dfrac{3}{5}\end{array} \right.\)
Vậy $x$ $∈$ `{0;-3/5}`