`a)` Xét `ΔBAD` và `ΔEAD` có:
`BA=AE` $(gt)$
$\widehat{BAD}$ `=` $\widehat{DAE}$ `(` `AD` là phân giác $\widehat{BAC}$ `)`
`AD` chung
`⇒ΔBAD=ΔEAD(c.g.c)`
`⇒` `BD=DE` ( cạnh tương ứng )
`b)` Ta có: `ΔBAD=ΔDAE` `(cmt)`
`⇒` $\widehat{ABD}$ `=` $\widehat{DEA}$ ( góc tương ứng )
Mà $\widehat{ABD}$ `=` `90^o` $(gt)$
`⇒` $\widehat{DEA}$ `=` `90^o`
`⇒DE⊥AC`
`c)` Xét `ΔAEF` và `ΔABC` có:
$\widehat{AEF}$ `=` $\widehat{ABC}$ `=` `90^o` $(gt)$
`AB=AE` $(gt)$
$\widehat{A}$ chung
`⇒ΔAEF=ΔABC(cgv-gn)`
`⇒AF=AC` ( cạnh tương ứng )
Ta có: `AB+BF=AF ; AE+EC=AC`
Mà `AB=AE` $(gt)$ ; `AF=AC` `(cmt)`
`⇒BF=EC`