Giải thích các bước giải:
\(\begin{array}{l}
g,\\
\dfrac{2}{{2x - 1}}.\sqrt {5{x^2}{{\left( {1 - 2x} \right)}^2}} \\
= \dfrac{2}{{2x - 1}}.\sqrt 5 .\left| x \right|.\left| {1 - 2x} \right|\\
= \dfrac{2}{{2x - 1}}.\sqrt 5 x.\left( {2x - 1} \right)\,\,\,\,\,\,\,\,\,\,\left( {x \ge \dfrac{1}{2}} \right)\\
= 2\sqrt 5 x\\
h,\\
\dfrac{2}{{{x^2} - {y^2}}}.\sqrt {\dfrac{{3{{\left( {x + y} \right)}^2}}}{2}} \\
= \dfrac{2}{{\left( {x - y} \right)\left( {x + y} \right)}}.\sqrt {\dfrac{3}{2}} .\left| {x + y} \right|\\
= \dfrac{2}{{\left( {x - y} \right)\left( {x + y} \right)}}.\sqrt {\dfrac{3}{2}} .\left( {x + y} \right)\,\,\,\,\,\,\,\,\,\,\,\,\left( {x,y > 0 \Rightarrow x + y > 0} \right)\\
= \dfrac{{\sqrt 6 }}{{x - y}}
\end{array}\)