`d) 2 2/5 : (1/2x - 0,75) = 3/10`
`=> 12/5 : (1/2x - 0,75) = 3/10`
`=> 1/2x - 0,75 = 12/5 : 3/10`
`=> 1/2x - 0,75 = 8`
`=> 1/2x = 8 + 0,75`
`=> 1/2x = 8,75`
`=> x = 8,75 : 1/2`
`=> x = 35/2`
`e) 1/12 . x^2 = 1 1/3`
`=> 1/12 . x^2 = 4/3`
`=> x^2 = 16`
`=> x = +-16`
`f) (x^2 - 4)(x + 3/5) = 0`
`=>` \(\left[ \begin{array}{l}x^2 - 4 = 0\\x + \frac{3}{5} = 0 \end{array} \right.\) `=>` \(\left[ \begin{array}{l}x^2 = 4\\x = 0 - \frac{3}{5} \end{array} \right.\) `=>` \(\left[ \begin{array}{l}x = \pm 2 \\x = \frac{-3}{5}\end{array} \right.\)
`g) 3/5 - |x - 1/2| = 25%`
`=> 3/5 - |x - 1/2| = 1/4`
`=> |x - 1/2| = 3/5 - 1/4`
`=> |x - 1/2| = 7/20`
`=>`
\(\left[ \begin{array}{l}x - \frac{1}{2} = \frac{7}{20}\\x - \frac{1}{2} = \frac{-7}{20} \end{array} \right.\) `=>` \(\left[ \begin{array}{l}x = \frac{17}{20} \\x = \frac{3}{20} \end{array} \right.\)
`h) 2/3x - 3/2x = 5/12`
`=> -5/6x = 5/12`
`=> x = 5/12 : (-5/6)`
`=> x = -1/2`