(-) A = $\dfrac{1^{2}}{1.2}$ . $\dfrac{2^{2}}{2.3}$ . $\dfrac{3^{2}}{3.4}$ .$\dfrac{4^{2}}{4.5}$
A = $\dfrac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}$
A = $\dfrac{(1.2.3.4).(1.2.3.4)}{(1.2.3.4).(2.3.4.5}$
A = $\dfrac{1}{5}$ ( rút gọn ở tử và mẫu )
B = $\dfrac{2^{2}}{1.3}$ . $\dfrac{3^{2}}{2.4}$ . $\dfrac{4^2}{3.5}$ . $\dfrac{5^{2}}{4.6}$
B= $\dfrac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}$
B = $\dfrac{(2.3.4.5).(2.3.4.5)}{(1.2.3.4).(3.4.5.6)}$
B = $\dfrac{5.2}{6}$ = $\dfrac{5}{3}$
(-)
a. $\dfrac{2}{1.3}$ + $\dfrac{2}{3.5}$ + $\dfrac{2}{5.7}$ + .... + $\dfrac{2}{99.101}$
= 1-$\dfrac{1}{3}$ + $\dfrac{1}{3}$ - $\dfrac{1}{5}$ + $\dfrac{1}{5}$ - $\dfrac{1}{7}$ + .....+$\dfrac{1}{99}$ - $\dfrac{1}{101}$
= 1 - $\dfrac{1}{101}$
= $\dfrac{100}{101}$
b. $\dfrac{5}{1.3}$ + $\dfrac{5}{3.5}$ + $\dfrac{5}{5.7}$ + ... +$\dfrac{5}{99.101}$
= 5. $\dfrac{2}{2}$ . ( $\dfrac{1}{1.3}$ + $\dfrac{1}{3.5}$ + $\dfrac{1}{5.7}$ + ... +$\dfrac{1}{99.101}$ )
= $\dfrac{5}{2}$ . ( $\dfrac{2}{1.3}$ + $\dfrac{2}{3.5}$ + $\dfrac{2}{5.7}$ + .... + $\dfrac{2}{99.101}$ )
= $\dfrac{5}{2}$ . (1- $\dfrac{1}{3}$ + $\dfrac{1}{3}$ - $\dfrac{1}{5}$ + $\dfrac{1}{5}$ - $\dfrac{1}{7}$ + ....+$\dfrac{1}{99}$ - $\dfrac{1}{101}$ )
= $\dfrac{5}{2}$ . ( 1 - $\dfrac{1}{101}$ )
= $\dfrac{5}{2}$ . $\dfrac{100}{101}$
= $\dfrac{250}{101}$