Đáp án:
1) \(Max = 1\)
Giải thích các bước giải:
\(\begin{array}{l}
1)P = \dfrac{{x - 3\sqrt x + 2x + 6\sqrt x - 3x - 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{3\sqrt x - 9}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{3}{{\sqrt x + 3}}\\
Do:x \ge 0\\
\to \sqrt x \ge 0\\
\to \sqrt x + 3 \ge 3\\
\to \dfrac{3}{{\sqrt x + 3}} \le \dfrac{3}{3}\\
\to \dfrac{3}{{\sqrt x + 3}} \le 1\\
\to Max = 1\\
\Leftrightarrow x = 0\\
2)A = \left[ {\dfrac{{\sqrt x - 2 + \sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}} \right].\dfrac{{\sqrt x - 2}}{{\sqrt x }}\\
= \dfrac{{2\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}.\dfrac{{\sqrt x - 2}}{{\sqrt x }}\\
= \dfrac{2}{{\sqrt x + 2}}\\
\dfrac{{7A}}{3} = \dfrac{{7.2}}{{3\left( {\sqrt x + 2} \right)}} = \dfrac{{14}}{{3\left( {\sqrt x + 2} \right)}}\\
\dfrac{{7A}}{3} \in Z\\
\to \dfrac{{14}}{{3\left( {\sqrt x + 2} \right)}} \in Z\\
\Leftrightarrow 3\left( {\sqrt x + 2} \right) \in U\left( {14} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
3\left( {\sqrt x + 2} \right) = 14\\
3\left( {\sqrt x + 2} \right) = - 14\\
3\left( {\sqrt x + 2} \right) = 7\\
3\left( {\sqrt x + 2} \right) = - 7\\
3\left( {\sqrt x + 2} \right) = 2\\
3\left( {\sqrt x + 2} \right) = - 2\\
3\left( {\sqrt x + 2} \right) = 1\\
3\left( {\sqrt x + 2} \right) = - 1
\end{array} \right. \to \left[ \begin{array}{l}
\sqrt x + 2 = \dfrac{{14}}{3}\left( l \right)\\
\sqrt x + 2 = - \dfrac{{14}}{3}\left( l \right)\\
\sqrt x + 2 = \dfrac{7}{3}\left( l \right)\\
\sqrt x + 2 = - \dfrac{7}{3}\left( l \right)\\
\sqrt x + 2 = \dfrac{2}{3}\left( l \right)\\
\sqrt x + 2 = - \dfrac{2}{3}\left( l \right)\\
\sqrt x + 2 = \dfrac{1}{3}\left( l \right)\\
\sqrt x + 2 = - \dfrac{1}{3}\left( l \right)
\end{array} \right.
\end{array}\)
⇒ Không tồn tại giá trị x TMĐK