Giải thích các bước giải:
e) $60 -3.(x -2) = 51$
$⇒ 60 -3x +6 = 51$
$⇒ 3x = 60 + 6 - 51$
$⇒ 3x = 15$
$⇒ x = 5`
Vậy $x= 5$
__________
f) `4x -20 = 2^5 : 2^2`
$⇒ 4x -20 = 2³$
$⇒ 4x - 20 = 8$
$⇒ 4x = 8 +20$
$⇒ 4x = 28$
$⇒ x = 7$
Vậy $x= 7$
__________
g) $2³.6 +288 :(x -3)² =50$
$⇒ 48 +288 :(x -3)² = 50$
$⇒ 288 :(x -3)² = 2$
$⇒ (x -3)² = 144$
$⇒ (x -3)² = (±12)²$
$⇒ \left[ \begin{array}{l}x -3=12\\x -3=-12\end{array} \right. ⇒ \left[ \begin{array}{l}x=15\\x=-9\end{array} \right.$
Vậy `x ∈ {15; -9}`
__________
h) 101 +(11² -x) = 109`
`⇒ 101 +121 -x = 109`
`⇒ x = 101 + 121 - 109`
`⇒ x = 113`
Vậy `x = 113`
__________
i) $x -6 :2 -(48 -24) :2 :6 -3 = 0$
$⇒ x -3 -24 :2 :6 -3 = 0$
$⇒ x -3 -2 -3 = 0$
$⇒ x = 8$
Vậy $x = 8$
__________
k) $x +5.2 -(32 +16.3 :6 -15) = 0$
$⇒ x +10 -(32 +8 -15) = 0$
$⇒ x +10 -25 = 0$
$⇒ x = 15$
Vậy $x = 15$
__________
l) `3.2^x -3 = 45`
`⇒ 3.2^x = 48`
`⇒ 2^x = 16`
`⇒ 2^x = 2^4`
`⇒ x = 4`
Vậy `x = 4`
__________
m) `4.x^3 +12 = 120`
`⇒ 4.x^3 = 108`
`⇒ x^3 = 27`
`⇒ x^3 = 3^3` `⇒ x = 3`
Vậy `x = 3`
__________
n) $[(x² +54) -42] .2 = 224$
`⇒ (x² +54) -42 = 112`
`⇒ x² +54 =154`
`⇒ x² = 100`
`⇒ x² = (±10)²`
`⇒ x = ± 10`
Vậy `x = ±10`
__________