Đáp án:
Câu 8: $x=-1$ hoặc $x=116$
Câu 9: $x=2$ hoặc $x=5$
Câu 10: $x=0$ hoặc $x=2$
Câu 11: $x=3\pm \sqrt{13}$
Câu 12: $x=1$ hoặc $x=\dfrac{-1\pm \sqrt{5}}{2}$
Câu 13: $x=\dfrac{3}{2}$ hoặc $x=-\dfrac{1}{2}$
Câu 14: $x=0$ hoặc $x=\pm 1$
Giải thích các bước giải:
Câu 8: $\sqrt{x+5}+\sqrt[3]{5-3x}=4$ (ĐK: $x\ge -5$)
Đặt $t=\sqrt{x+5}\,\,\,\left( t\ge 0 \right)$
$\Leftrightarrow {{t}^{2}}=x+5$
$\Leftrightarrow -3{{t}^{2}}=-3x-15$
$\Leftrightarrow 20-3{{t}^{2}}=5-3x$
Pt $\Leftrightarrow t+\sqrt[3]{20-3{{t}^{2}}}=4$
$\Leftrightarrow \left( 20-3{{t}^{2}} \right)={{\left( 4-t \right)}^{3}}$
$\Leftrightarrow {{t}^{3}}-15{{t}^{2}}+48t-44=0$
$\Leftrightarrow {{\left( t-2 \right)}^{2}}\left( t-11 \right)=0$
$\Leftrightarrow t=2$ hoặc $t=11$
$\Leftrightarrow \sqrt{x+5}=2$ hoặc $\sqrt{x+5}=11$
$\Leftrightarrow x=-1$ hoặc $x=116$
Câu 9: $\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{6-x}}=\dfrac{3}{2}$ (ĐK: $1<x<6$)
Đặt $a=\dfrac{1}{\sqrt{x-1}}\,\,\left( a>0 \right)\,\,;\,\,b=\dfrac{1}{\sqrt{6-x}}\,\,\left( b>0 \right)$
$\Rightarrow a+b=\dfrac{3}{2}$
Xét ${{a}^{2}}+{{b}^{2}}=\dfrac{1}{x-1}+\dfrac{1}{6-x}=\dfrac{5}{\left( x-1 \right)\left( 6-x \right)}$
Xét ${{a}^{2}}.{{b}^{2}}=\dfrac{1}{x-1}\cdot \dfrac{1}{6-x}=\dfrac{1}{\left( x-1 \right)\left( 6-x \right)}$
Vậy ${{a}^{2}}+{{b}^{2}}=5{{a}^{2}}{{b}^{2}}$
$\Leftrightarrow {{\left( a+b \right)}^{2}}-2ab=5{{a}^{2}}{{b}^{2}}$
$\Leftrightarrow \dfrac{9}{4}-2ab=5{{a}^{2}}{{b}^{2}}$
$\Leftrightarrow 5{{a}^{2}}{{b}^{2}}+2ab-\dfrac{9}{4}=0$
$\Leftrightarrow ab=\dfrac{1}{2}$ (nhận) hoặc $ab=-\dfrac{9}{10}$ (loại)
Kết hợp $a+b=\dfrac{3}{2}$
Theo Vi-et đảo, $a,b$ là nghiệm của pt
${{X}^{2}}-\dfrac{3}{2}X+\dfrac{1}{2}=0$
$\Leftrightarrow X=1$ hoặc $X=\dfrac{1}{2}$
$\Leftrightarrow\begin{cases}a=1\\b=\dfrac{1}{2}\end{cases}$ hoặc $\begin{cases}a=\dfrac{1}{2}\\b=1\end{cases}$
$\Leftrightarrow\begin{cases}\dfrac{1}{\sqrt{x-1}}=1\\\dfrac{1}{\sqrt{6-x}}=\dfrac{1}{2}\end{cases}$ hoặc $\begin{cases}\dfrac{1}{\sqrt{x-1}}=\dfrac{1}{2}\\\dfrac{1}{\sqrt{6-x}}=1\end{cases}$
$\Leftrightarrow\begin{cases}x=2\\x=2\end{cases}$ hoặc $\begin{cases}x=5\\x=5\end{cases}$
$\Leftrightarrow x=2$ hoặc $x=5$
Câu 10: ${{x}^{2}}+2=2\sqrt{{{x}^{3}}+1}$ (ĐK: $x\ge -1$)
$\Leftrightarrow {{x}^{2}}+2=2\sqrt{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)}$
Đặt $a=\sqrt{x+1}\,\,\left( a\ge 0 \right)$
Đặt $b=\sqrt{{{x}^{2}}-x+1}\,\,\left( b>0 \right)$
$\Rightarrow {{a}^{2}}+{{b}^{2}}={{x}^{2}}+2$
Pt $\Leftrightarrow {{a}^{2}}+{{b}^{2}}=2ab$
$\Leftrightarrow {{\left( a-b \right)}^{2}}=0$
$\Leftrightarrow a=b$
$\Leftrightarrow \sqrt{x+1}=\sqrt{{{x}^{2}}-x+1}$
$\Leftrightarrow x+1={{x}^{2}}-x+1$
$\Leftrightarrow x=0$ (nhận) hoặc $x=2$ (nhận)
Câu 11: $2{{x}^{2}}-6x+4=3\sqrt{{{x}^{3}}+8}$ (ĐK: $x\ge -2$)
$\Leftrightarrow 2\left( {{x}^{2}}-3x+2 \right)=3\sqrt{\left( x+2 \right)\left( {{x}^{2}}-2x+4 \right)}$
Đặt $a=\sqrt{x+2}\,\,\left( a\ge 0 \right)$
Đặt $b=\sqrt{{{x}^{2}}-2x+4}\,\,\left( b>0 \right)$
$\Rightarrow {{b}^{2}}-{{a}^{2}}={{x}^{2}}-3x+2$
Pt $\Leftrightarrow 2\left( {{b}^{2}}-{{a}^{2}} \right)=3ab$
$\Leftrightarrow \left( 2a-b \right)\left( a+2b \right)=0$
$\Leftrightarrow 2a=b$ (vì $a+2b>0$)
$\Rightarrow 2\sqrt{x+2}=\sqrt{{{x}^{2}}-2x+4}$
$\Leftrightarrow 4\left( x+2 \right)={{x}^{2}}-2x+4$
$\Leftrightarrow {{x}^{2}}-6x-4=0$
$\Leftrightarrow x=3\pm \sqrt{13}$ (nhận)
Câu 12: ${{x}^{3}}+1=2\sqrt[3]{2x-1}$
Đặt $t=\sqrt[3]{2x-1}$
$\Leftrightarrow {{t}^{3}}=2x-1$
$\Leftrightarrow 1=2x-{{t}^{3}}$
Pt $\Leftrightarrow {{x}^{3}}+2x-{{t}^{3}}=2t$
$\Leftrightarrow \left( x-t \right)\left( {{x}^{2}}+xt+{{t}^{2}} \right)+2\left( x-t \right)=0$
$\Leftrightarrow \left( x-t \right)\left( {{x}^{2}}+xt+{{t}^{2}}+2 \right)=0$
$\Leftrightarrow x=t$ (vì ${{x}^{2}}+xt+{{t}^{2}}+2>0$)
$\Leftrightarrow x=\sqrt[3]{2x-1}$
$\Leftrightarrow {{x}^{3}}=2x-1$
$\Leftrightarrow \left( x-1 \right)\left( {{x}^{2}}+x-1 \right)=0$
$\Leftrightarrow x=1$ hoặc $x=\dfrac{-1\pm \sqrt{5}}{2}$
Câu 13: $2\sqrt{2x+1}+2\sqrt{3-2x}={{\left( 2x-1 \right)}^{2}}$ (ĐK: $-\dfrac{1}{2}\le x\le \dfrac{3}{2}$)
$\Leftrightarrow 2\sqrt{2x+1}+2\sqrt{3-2x}=4{{x}^{2}}-4x+1$
$\Leftrightarrow \left[ 2\sqrt{2x+1}-\left( 2x+1 \right) \right]+\left[ 2\sqrt{3-2x}-\left( 3-2x \right) \right]+\left( -4{{x}^{2}}+4x+3 \right)=0$
$\Leftrightarrow \dfrac{4\left( 2x+1 \right)-{{\left( 2x+1 \right)}^{2}}}{2\sqrt{2x+1}+2x+1}+\dfrac{4\left( 3-2x \right)-{{\left( 3-2x \right)}^{2}}}{2\sqrt{3-2x}+3-2x}+\left( -4{{x}^{2}}+4x+3 \right)=0$
$\Leftrightarrow \dfrac{-4{{x}^{2}}+4x+3}{2\sqrt{2x+1}+2x+1}+\dfrac{-4{{x}^{2}}+4x+3}{2\sqrt{3-2x}+3-2x}+\left( -4{{x}^{2}}+4x+3 \right)=0$
$\Leftrightarrow \left( -4{{x}^{2}}+4x+3 \right)\left( \dfrac{1}{2\sqrt{2x+1}+2x+1}+\dfrac{1}{2\sqrt{3-2x}+3-2x}+1 \right)=0$
$\Leftrightarrow -4{{x}^{2}}+4x+3=0$ (vế sau luôn dương)
$\Leftrightarrow x=\dfrac{3}{2}$ (nhận) hoặc $x=-\dfrac{1}{2}$ (nhận)
Câu 14: $\sqrt{{{x}^{2}}+x+1}+\sqrt{{{x}^{2}}-x+1}=\sqrt{{{x}^{4}}+{{x}^{2}}+1}+1$
$\Leftrightarrow \sqrt{{{x}^{2}}+x+1}+\sqrt{{{x}^{2}}-x+1}=\sqrt{\left( {{x}^{2}}+x+1 \right)\left( {{x}^{2}}-x+1 \right)}+1$
$\Leftrightarrow a+b=ab+1$ với $\begin{cases}a=\sqrt{x^2+x+1}\\b=\sqrt{x^2-x+1}\end{cases}\,\,\,\left(a,b>0\right)$
$\Leftrightarrow \left( a-1 \right)\left( 1-b \right)=0$
$\Leftrightarrow a=1$ hoặc $b=1$
$\Leftrightarrow \sqrt{{{x}^{2}}+x+1}=1$ hoặc $\sqrt{{{x}^{2}}-x+1}=1$
$\Leftrightarrow {{x}^{2}}+x=0$ hoặc ${{x}^{2}}-x=0$
$\Leftrightarrow\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$ hoặc $\left[ \begin{array}{l}x=0\\x=1\end{array} \right.$
$\Leftrightarrow x=0$ hoặc $x=\pm 1$