Đáp án:
$0<x\le\dfrac{25}{4}$
Giải thích các bước giải:
ĐKXĐ: $x>0; x\ne 25$
$A=\bigg{(}\dfrac{\sqrt x}{\sqrt x-5}+\dfrac{\sqrt x}{\sqrt x+5}\bigg):\dfrac{5\sqrt x}{x-25}$
$=\sqrt x.\bigg(\dfrac{\sqrt x+5}{x-25}+\dfrac{\sqrt x-5}{x-25}\bigg).\dfrac{x-25}{5\sqrt x}$
$=\dfrac{\sqrt x+5+\sqrt x-5}{5}$
$=\dfrac{2\sqrt x}{5}$
$A\le 1$
$⇒\dfrac{2\sqrt x}{5}\le 1$
$⇒2\sqrt x\le 5$
$⇒\sqrt x\le\dfrac{5}{2}$
$⇒0<x\le\dfrac{25}{4}$
Vậy $A\le 1$ khi $0<x\le\dfrac{25}{4}$.