`b) (\sqrt3+\sqrt2)^2-`$6\sqrt{\dfrac23}$
`=3+2\sqrt6+2-`$\sqrt{\dfrac{36.2}{3}}$
`=5+2\sqrt6-\sqrt24`
`=5+2\sqrt6-2\sqrt6`
`=5`
`c) \sqrt{(7-3)^2}+\sqrt{8+2\sqrt7}`
`=\sqrt{4^2}+\sqrt{(\sqrt7+1)^2}`
`=4+\sqrt7+1`
`=5+\sqrt7`
`d) (3+(5-\sqrt15)/(\sqrt5 -\sqrt3)).(\sqrt5+1)/(\sqrt5 +2)`
`=[3+(\sqrt5(\sqrt5-\sqrt3))/(\sqrt5 -\sqrt3)].(\sqrt5+1)/(\sqrt5 +2)`
`=(3+\sqrt5).(\sqrt5+1)/(\sqrt5 +2)`
`=(3\sqrt5+3+5+\sqrt5)/(\sqrt5+2)`
`=(4\sqrt5+8)/(\sqrt5+2)`
`=(4(\sqrt5+2))/(\sqrt5+2)`
`=4`