Đáp án:
b) \(\left\{ \begin{array}{l}
x = \dfrac{1}{{\sqrt 6 }}\\
y = - \dfrac{1}{{\sqrt 2 }}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\left\{ \begin{array}{l}
- 2x + 3\sqrt 2 y = - \sqrt 2 \\
2x + y\sqrt 2 = - 2
\end{array} \right.\\
\to \left\{ \begin{array}{l}
4\sqrt 2 y = - 2 - \sqrt 2 \\
2x + y\sqrt 2 = - 2
\end{array} \right.\\
\to \left\{ \begin{array}{l}
y = \dfrac{{ - 1 - \sqrt 2 }}{4}\\
x = \dfrac{{ - 6 + \sqrt 2 }}{8}
\end{array} \right.\\
b)\left\{ \begin{array}{l}
5x\sqrt 6 + y\sqrt 2 = 4\\
x\sqrt 6 - y\sqrt 2 = 2
\end{array} \right.\\
\to \left\{ \begin{array}{l}
6x\sqrt 6 = 6\\
x\sqrt 6 - y\sqrt 2 = 2
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = \dfrac{1}{{\sqrt 6 }}\\
y = - \dfrac{1}{{\sqrt 2 }}
\end{array} \right.
\end{array}\)