Giải thích các bước giải:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - 1} \frac{{\sqrt[3]{x} + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \frac{{\left( {\sqrt[3]{x} + 1} \right)}}{{\left( {\sqrt[3]{x} + 1} \right)\left( {\sqrt[3]{{{x^2}}} - \sqrt[3]{x} + 1} \right)}}\\
= \mathop {\lim }\limits_{x \to - 1} \frac{1}{{\sqrt[3]{{{x^2}}} - \sqrt[3]{x} + 1}}\\
= \frac{1}{{\sqrt[3]{1} - \sqrt[3]{{ - 1}} + 1}} = \frac{1}{3}
\end{array}\)