Ta có: $x^n-1$=$(x-1)(x^{n-1}+ x^{n-2}+....+x^0)$
Suy ra:
$\frac{x^{2018}-1 + x-1}{x^{2016}-1+x-1}$ = $\frac{x^{2017}+x^{2016}+...+x+1+1}{x^{2015}+x^{2014}+...+x+1+1}$
Vậy $\lim_{x \to 1} \frac{x^{2018}+x-2}{x^{2016}+x-2}$ = $\lim_{x \to 1}\frac{x^{2017}+x^{2016}+...+x+1+1}{x^{2015}+x^{2014}+...+x+1+1} $ = $\frac{2019}{2017}$ = $\frac{2019}{2017}$