Đáp án:
Giải thích các bước giải:
lim(√n2+2n−n−1)=limn2+2n−(n+1)2√n2+2n+n+1=lim−1√n2+2n+n+1=lim−1n√1+2n+1+1n=0lim(√4n2+n−n)=lim4n2+n−n2√4n2+n+n=lim3+1n√4n2+1n4+1n=+∞lim(√n2−n−n)=limn2−n−n2√n2−n+n=lim−1√1−1n+1=−1lim(n2+2n−n−1)=limn2+2n−(n+1)2n2+2n+n+1=lim−1n2+2n+n+1=lim−1n1+2n+1+1n=0lim(4n2+n−n)=lim4n2+n−n24n2+n+n=lim3+1n4n2+1n4+1n=+∞lim(n2−n−n)=limn2−n−n2n2−n+n=lim−11−1n+1=−1