$\displaystyle\lim_{n \to -\infty} \dfrac{2x^3+2}{\sqrt{2x-3}+x-\dfrac{1}{2}}\\ ĐKXĐ:\left\{\begin{array}{l} 2x-3\ge 0\\\sqrt{2x-3}+x-\dfrac{1}{2} \ne 0\end{array} \right. \\\Leftrightarrow x \ge \dfrac{3}{2}(Do\, x \ge \dfrac{3}{2} \Rightarrow \sqrt{2x-3}+x-\dfrac{1}{2} \ge 1 \ne 0 \, \forall \, x)\\ \\ \Rightarrow \not\exists \displaystyle\lim_{n \to -\infty} \dfrac{2x^3+2}{\sqrt{2x-3}+x-\dfrac{1}{2}}$