Đáp án:
C28:
b) \(0 < x < 9;x \ne 1\)
Giải thích các bước giải:
\(\begin{array}{l}
B27:\\
a)DK:x \ge 0;x \ne 3\\
P = \left[ {\dfrac{{2x - 6\sqrt x + x + 3\sqrt x - 3x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}} \right]:\left[ {\dfrac{{2\sqrt x - 2 - \sqrt x + 3}}{{\sqrt x - 3}}} \right]\\
= \dfrac{{ - 3\sqrt x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x - 3}}{{\sqrt x + 1}}\\
= - \dfrac{3}{{\sqrt x + 3}}\\
b)P < - \dfrac{1}{2}\\
\to - \dfrac{3}{{\sqrt x + 3}} < - \dfrac{1}{2}\\
\to \dfrac{3}{{\sqrt x + 3}} > \dfrac{1}{2}\\
\to \dfrac{{6 - \sqrt x - 3}}{{2\left( {\sqrt x + 3} \right)}} > 0\\
\to \dfrac{{3 - \sqrt x }}{{2\left( {\sqrt x + 3} \right)}} > 0\\
\to 3 - \sqrt x > 0\left( {Do:2\left( {\sqrt x + 3} \right) > 0\forall x \ge 0} \right)\\
\to x < 9\\
\to 0 \le x < 9\\
c)P = - \dfrac{3}{{\sqrt x + 3}}\\
Do:x \ge 0\\
\to \sqrt x + 3 \ge 3\\
\to \dfrac{3}{{\sqrt x + 3}} \le 1\\
\to - \dfrac{3}{{\sqrt x + 3}} \ge - 1\\
\to Min = - 1\\
\Leftrightarrow x = 0\\
C28)\\
a)DK:x > 0;x \ne 1\\
A = \left[ {\dfrac{{x - 1}}{{2\sqrt x }}} \right].\left[ {\dfrac{{\left( {x - \sqrt x } \right)\left( {\sqrt x - 1} \right) - \left( {x + \sqrt x } \right)\left( {\sqrt x + 1} \right)}}{{x - 1}}} \right]\\
= \dfrac{{x\sqrt x - x - x + \sqrt x - x\sqrt x - x - x - \sqrt x }}{{2\sqrt x }}\\
= \dfrac{{ - 4x}}{{2\sqrt x }} = - 2\sqrt x \\
b)A > - 6\\
\to - 2\sqrt x > - 6\\
\to 2\sqrt x < 6\\
\to \sqrt x < 3\\
\to x < 9\\
\to 0 < x < 9;x \ne 1
\end{array}\)