~Gửi bạn nhea~
Điều kiện: `x >= 0 ; x \ne 1`
`M=((\sqrtx+2)/(x+2\sqrtx+1)-(\sqrtx-2)/(x-1))*(\sqrtx+1)/(\sqrtx)`
`M=[(\sqrtx+2)/(\sqrtx+1)^2-(\sqrtx-2)/((\sqrtx+1)(\sqrtx-1))]*(\sqrtx+1)/(\sqrtx)`
`M=[((\sqrtx+2)(\sqrtx-1))/((\sqrtx+1)^2(\sqrtx-1))-((\sqrtx-2)(\sqrtx+1))/((\sqrtx+1)^2(\sqrtx-1))]*(\sqrtx+1)/(\sqrtx)`
`M=[((\sqrtx+2)(\sqrtx-1)-(\sqrtx-2)(\sqrtx+1))/((\sqrtx+1)^2(\sqrtx-1))]*(\sqrtx+1)/(\sqrtx)`
`M=(x-\sqrtx+2\sqrtx-2-(x+\sqrtx-2\sqrtx-2))/((\sqrtx+1)^2(\sqrtx-1))*(\sqrtx+1)/(\sqrtx)`
`M=(x-\sqrtx+2\sqrtx-2-x-\sqrtx+2\sqrtx+2)/((\sqrtx+1)^2(\sqrtx-1))*(\sqrtx+1)/(\sqrtx)`
`M=(2\sqrtx)/((\sqrtx+1)^2(\sqrtx-1))*(\sqrtx+1)/(\sqrtx)`
`M=2/((\sqrtx+1)(\sqrtx-1))`
`M=2/(x-1)`
.............................
`b)`
`2/(x-1)\ (x \ne 1)`
Để `M ∈ Z` thì:
`2 \vdots x-1`
`->x-1 ∈ Ư(2)={±1;±2}`
`**x-1=1→x=2\ (TM)`
`**x-1=-1→x=0\ (TM)`
`**x-1=2→x=3\ (TM)`
`->x-1=-2→x=-1\ (KTM)`
Vậy `x∈{2;3;0}` thì `M ∈ Z`