Đáp án:
$\begin{array}{l}
a)\sqrt {{{\left( {2x - 1} \right)}^2}} = 3\\
\Leftrightarrow 4{x^2} - 4x + 1 = 9\\
\Leftrightarrow 4{x^2} - 4x - 8 = 0\\
\Leftrightarrow 4\left( {x - 2} \right)\left( {x + 1} \right) = 0\\
\Leftrightarrow x = 2/x = - 1\\
Vậy\,x = 2;x = - 1\\
b)Dkxd:x \ge 0\\
\dfrac{5}{3}\sqrt {15x} - \sqrt {15x} - 2 = \dfrac{1}{3}\sqrt {15x} \\
\Leftrightarrow \dfrac{1}{3}\sqrt {15x} = 2\\
\Leftrightarrow \sqrt {15x} = 6\\
\Leftrightarrow 15x = 36\\
\Leftrightarrow x = \dfrac{{12}}{5}\\
Vậy\,x = \dfrac{{12}}{5}\\
c)Dkxd:x \ge - 1\\
\sqrt {16x + 16} - \sqrt {9x + 9} + \sqrt {4x + 4} + \sqrt {x + 1} = 16\\
\Leftrightarrow 4\sqrt {x + 1} - 3\sqrt {x + 1} + 2\sqrt {x + 1} + \sqrt {x + 1} = 16\\
\Leftrightarrow 4\sqrt {x + 1} = 16\\
\Leftrightarrow \sqrt {x + 1} = 4\\
\Leftrightarrow x + 1 = 16\\
\Leftrightarrow x = 15\\
Vậy\,x = 15\\
d)Dkxd:x \ge 0\\
\Leftrightarrow 3\sqrt {2x} - 5\sqrt {8x} + 7\sqrt {18x} = 24\\
\Leftrightarrow 3\sqrt {2x} - 5.2\sqrt {2x} + 7.3\sqrt {2x} = 24\\
\Leftrightarrow 14\sqrt {2x} = 24\\
\Leftrightarrow \sqrt {2x} = \dfrac{{12}}{7}\\
\Leftrightarrow 2x = \dfrac{{144}}{{49}}\\
\Leftrightarrow x = \dfrac{{72}}{{49}}\\
Vậy\,x = \dfrac{{72}}{{49}}\\
e)Dkxd:x \ge - 5\\
\sqrt {4x + 20} - 3\sqrt {5 + x} + \dfrac{4}{3}\sqrt {9x + 45} = 6\\
\Leftrightarrow 2\sqrt {x + 5} - 3\sqrt {x + 5} + \dfrac{4}{3}.3.\sqrt {x + 5} = 6\\
\Leftrightarrow 3\sqrt {x + 5} = 6\\
\Leftrightarrow \sqrt {x + 5} = 2\\
\Leftrightarrow x + 5 = 4\\
\Leftrightarrow x = - 1\left( {tm} \right)\\
Vậy\,x = - 1\\
d)Dkxd:x \ge 1\\
\sqrt {25x - 25} + \dfrac{{15}}{2}\sqrt {\dfrac{{x - 1}}{9}} = 6 + \sqrt {x - 1} \\
\Leftrightarrow 5\sqrt {x - 1} + \dfrac{{15}}{2}.\dfrac{{\sqrt {x - 1} }}{3} - \sqrt {x - 1} = 6\\
\Leftrightarrow \dfrac{{13}}{2}\sqrt {x - 1} = 6\\
\Leftrightarrow \sqrt {x - 1} = \dfrac{{12}}{{13}}\\
\Leftrightarrow x - 1 = \dfrac{{144}}{{169}}\\
\Leftrightarrow x = \dfrac{{213}}{{169}}\\
Vậy\,x = \dfrac{{213}}{{169}}
\end{array}$