Đáp án :
`A = \frac{x+1}{x + \sqrtx}`
Giải thích các bước giải :
`A = (\frac{\sqrtx}{\sqrtx - 1} - \frac{1}{\sqrtx + 1 }) : (\frac{x\sqrtx + 1}{x-1} - \frac{x-1}{\sqrtx + 1})` `( x > 0 , x \ne 1 )`
`A = (\frac{\sqrtx ( \sqrtx + 1 )}{x - 1 }- \frac{\sqrtx - 1}{x-1}) : (\frac{x\sqrtx + 1}{x - 1} - \frac{( x - 1 )( \sqrtx - 1 )}{x - 1})`
`A = \frac{x + \sqrtx - \sqrtx + 1 }{ x - 1} . \frac{x-1}{x\sqrtx + 1 - ( x\sqrtx - x - \sqrtx + 1) }`
`A = \frac{x+1}{x + \sqrtx}`