Đáp án:
Giải thích các bước giải:
ΔABC là Δvg
vì AC²+AB²=6²+8²=35+64=100(1)
mà BC²=10²=100(2)
từ 1 và 2
⇒ΔABC vg tại A
xét ΔABC vg tại A
⇒AH.BC=AB.AC
AH=6.8/10=4,8
AB²=HB.BC
HB=AB²:10=6²:10=3,6
AC²=HC.BC
HC=AC²:BC=8²:10=6,4
B, xétΔAHB vg tại H(AH là dg cao) dg cao HM
AH²=AM.AB
AM=AH²:AB=4,8²:6=3,84
BH²=BM.AB
BM=BH²:AB=3,6²:6=2,16
HM²=AM.BM
HM=√3,84.2,16=2,88
xétΔAHC vg tại H(AH là dg cao) dg cao HN
CH²=CN.AC
CN=HC²:AC=6,4²:8=5,12
xét tứ giác ANHM
có A=N=H=90 độ
⇒tứ giác ANHM là hcn
⇒HM=AN=2,88
⇒AM=HN=3,84
C, ta có tứ giác ANHM là hcn
⇒AH=MN=4,8(hai dg chéo = nhau)