Đáp án:
e. Min=-1
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ge 0;x \ne 1\\
P = \left[ {\dfrac{1}{{\sqrt x - 1}} - \dfrac{{2\sqrt x }}{{x\left( {\sqrt x - 1} \right) + \left( {\sqrt x - 1} \right)}}} \right]:\left[ {\dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{x\left( {\sqrt x + 1} \right) + \sqrt x + 1}} + \dfrac{1}{{x + 1}}} \right]\\
= \left[ {\dfrac{1}{{\sqrt x - 1}} - \dfrac{{2\sqrt x }}{{\left( {x + 1} \right)\left( {\sqrt x - 1} \right)}}} \right]:\left[ {\dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {x + 1} \right)}} + \dfrac{1}{{x + 1}}} \right]\\
= \dfrac{{x + 1 - 2\sqrt x }}{{\left( {x + 1} \right)\left( {\sqrt x - 1} \right)}}:\left[ {\dfrac{{\sqrt x + 1}}{{x + 1}}} \right]\\
= \dfrac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {\sqrt x - 1} \right)}}.\dfrac{{x + 1}}{{\sqrt x + 1}}\\
= \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}}\\
c.P = \dfrac{1}{3}\\
\to \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}} = \dfrac{1}{3}\\
\to 3\sqrt x - 3 = \sqrt x + 1\\
\to 2\sqrt x = 4\\
\to \sqrt x = 2\\
\to x = 4\\
d.P = \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}} = \dfrac{{\sqrt x + 1 - 2}}{{\sqrt x + 1}}\\
= 1 - \dfrac{2}{{\sqrt x + 1}}\\
P \in Z \Leftrightarrow \dfrac{2}{{\sqrt x + 1}} \in Z\\
\Leftrightarrow \sqrt x + 1 \in U\left( 2 \right)\\
Mà:\sqrt x + 1 > 0\forall x \ge 0\\
\to \left[ \begin{array}{l}
\sqrt x + 1 = 2\\
\sqrt x + 1 = 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 1\left( l \right)\\
x = 0\left( {TM} \right)
\end{array} \right.\\
e.Do:\sqrt x \ge 0\\
\to \sqrt x + 1 \ge 1\\
\to \dfrac{2}{{\sqrt x + 1}} \le 2\\
\to - \dfrac{2}{{\sqrt x + 1}} \ge - 2\\
\to 1 - \dfrac{2}{{\sqrt x + 1}} \ge - 1\\
\to Min = - 1\\
\Leftrightarrow x = 0
\end{array}\)