Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\frac{1}{2}\ln \left| {\frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right| = \frac{1}{2}\ln \frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }} = \frac{1}{2}\ln \frac{{{{\left( {2 + \sqrt 3 } \right)}^2}}}{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}}\\
= \frac{1}{2}\ln \frac{{{{\left( {2 + \sqrt 3 } \right)}^2}}}{1} = \frac{1}{2}\ln {\left( {2 + \sqrt 3 } \right)^2} = 2.\frac{1}{2}\ln \left( {2 + \sqrt 3 } \right) = \ln \left( {2 + \sqrt 3 } \right)
\end{array}\)